Get degree ideas using our A level explorer tool

Space Systems Engineering (Degree Apprenticeship)

Entry requirements


A level

B,B,C-B,C,C

104-112 points from 2 or 3 A levels, to include a relevant subject.

106-112 Tariff points from the Access to HE Diploma in a relevant subject.

Cambridge Pre-U score of 50-54, to include a relevant subject.

GCSE/National 4/National 5

3 GCSEs at grade C or above to include English and Mathematics/3 GCSEs at grade 4 or above to include English and Mathematics.

International Baccalaureate Diploma Programme

28-29

28 points from the IB Diploma. 654 at Higher Level, to include a Higher Level in a relevant subject. - 29 points from the IB Diploma. 655/754 at Higher Level, to include a Higher Level in a relevant subject.

Leaving Certificate - Higher Level (Ireland) (first awarded in 2017)

H3,H3,H3,H3,H4-H2,H2,H3,H3,H3


To include a Higher Level in a numerical subject.

Acceptable when combined with other qualifications

Acceptable when combined with other qualifications

Pearson BTEC Level 3 National Extended Diploma (first teaching from September 2016)

DMM

Must be in a relevant subject.

104-112 Tariff points to include a relevant subject.

T Level

M

Acceptable T Level Subjects: T Level in Construction: Design, Surveying and Planning, T Level in Building Services Engineering, T Level in Engineering and Manufacturing Design and Development, T Level in Maintenance, Installation and Repair for Engineering and Manufacturing, T Level in Engineering, Manufacturing, Processing and Control

UCAS Tariff

104-112

104-112 points from 2 or 3 A levels, or equivalent, to include a relevant subject.

104-112 points from the Advanced Welsh Baccalaureate including 2 A levels one of which must be a relevant subject, plus the Advanced Skills Challenge Certificate.

You may also need to…

Attend an interview

Present a portfolio

About this course


Course option

4years

Part-time | 2024

Subjects

Space technology

Electronic engineering

Mechanical engineering

**Overview**

Develop your engineering role in the space or aerospace sector with this work-based degree, and help meet the challenges faced at the next frontier in technology.

With this degree apprenticeship in space systems engineering, you'll develop skills in systems engineering, hardware design, coding and the commercial application of your new abilities. You'll be studying on day release, which means you'll be able to apply your new knowledge to your workplace throughout your study, giving you and your employer a toolkit to meet the skills gap identified by the UK Space Agency.

You'll learn practical methods to apply contemporary space engineering practice in your career, whether in spacecraft operation and aerospace design, or in earthbound fields that can benefit from innovation in technology. You'll also build your connections with commercial and academic operators in the sector, develop your understanding of industry's current state, and position yourself to steer a course through the possibilities of outer space.

This is a new course and we're finalising the detailed information for this page.

Modules

**What you'll study**

Level 4
Space Science
Introduction to Materials and Manufacture
Mathematical Principles
Introduction to Analogue Circuits
Intro to Solid Mechanics and Dynamics
Intro to Thermodynamics and Fluid Mechanics

Level 5
Group Design Project
Telecommunication Principles
Computer Aided Design and Product Manufacture
Spacecrafts and Space Missions
Control Systems Analysis
Microcontrollers and Programmable Logic

Level 6
Space Propulsion and Aircraft Aerodynamics
Sustainable Development and Environmental Management
Space Systems Simulations
BEng Individual Project
Digital Signal Processing
Finite Elements in Solid Mechanics

**Changes to course content**

We use the best and most current research and professional practice alongside feedback from our students to make sure course content is relevant to your future career or further studies.

Therefore, some course content may change over time to reflect changes in the discipline or industry. If a module doesn't run, we'll let you know as soon as possible and help you choose an alternative module.

The Uni


Course location:

University of Portsmouth

Department:

Faculty of Technology

Read full university profile

What students say


We've crunched the numbers to see if overall student satisfaction here is high, medium or low compared to students studying this subject(s) at other universities.

69%
Electronic engineering
75%
Mechanical engineering

How do students rate their degree experience?

The stats below relate to the general subject area/s at this university, not this specific course. We show this where there isn’t enough data about the course, or where this is the most detailed info available to us.

Aeronautical and aerospace engineering

Sorry, no information to show

This is usually because there were too few respondents in the data we receive to be able to provide results about the subject at this university.


Who studies this subject and how do they get on?

82%
UK students
18%
International students
88%
Male students
12%
Female students
62%
2:1 or above
14%
First year drop out rate

Most popular A-Levels studied (and grade achieved)

C
D
B

Electrical and electronic engineering

Teaching and learning

67%
Staff make the subject interesting
73%
Staff are good at explaining things
57%
Ideas and concepts are explored in-depth
57%
Opportunities to apply what I've learned

Assessment and feedback

Feedback on work has been timely
Feedback on work has been helpful
Staff are contactable when needed
Good advice available when making study choices

Resources and organisation

81%
Library resources
85%
IT resources
85%
Course specific equipment and facilities
51%
Course is well organised and has run smoothly

Student voice

Staff value students' opinions
Feel part of a community on my course

Who studies this subject and how do they get on?

83%
UK students
17%
International students
92%
Male students
8%
Female students
77%
2:1 or above
14%
First year drop out rate

Most popular A-Levels studied (and grade achieved)

C
D
B

Mechanical engineering

Teaching and learning

67%
Staff make the subject interesting
84%
Staff are good at explaining things
75%
Ideas and concepts are explored in-depth
66%
Opportunities to apply what I've learned

Assessment and feedback

Feedback on work has been timely
Feedback on work has been helpful
Staff are contactable when needed
Good advice available when making study choices

Resources and organisation

75%
Library resources
83%
IT resources
77%
Course specific equipment and facilities
64%
Course is well organised and has run smoothly

Student voice

Staff value students' opinions
Feel part of a community on my course

Who studies this subject and how do they get on?

82%
UK students
18%
International students
89%
Male students
11%
Female students
58%
2:1 or above
10%
First year drop out rate

Most popular A-Levels studied (and grade achieved)

C
D
D

After graduation


The stats in this section relate to the general subject area/s at this university – not this specific course. We show this where there isn't enough data about the course, or where this is the most detailed info available to us.

Aeronautical and aerospace engineering

What are graduates doing after six months?

This is what graduates told us they were doing (and earning), shortly after completing their course. We've crunched the numbers to show you if these immediate prospects are high, medium or low, compared to those studying this subject/s at other universities.

£25,000
med
Average annual salary
98%
high
Employed or in further education

Top job areas of graduates

52%
Engineering professionals
8%
Information technology and telecommunications professionals
5%
Information technology technicians

Just over a thousand UK graduates got a degree in aerospace engineering in 2015. There are a few dedicated employers, unevenly spread around the country, and so there's often competition for graduates looking for their first job - which leads to a relatively high (although improving) early unemployment rate, and a good grade is particularly important for graduates. Sponsorship and work experience can be key if you're after the most sought-after roles in the industry. Starting salaries are usually good and graduates commonly go into the aerospace (yes, this does include manufacture of equipment for satellites and space operations) and defence industries. Bear in mind that a lot of courses are four years long, and lead to an MEng qualification — this is necessary if you want to become a Chartered Engineer.

Electrical and electronic engineering

What are graduates doing after six months?

This is what graduates told us they were doing (and earning), shortly after completing their course. We've crunched the numbers to show you if these immediate prospects are high, medium or low, compared to those studying this subject/s at other universities.

£25,000
med
Average annual salary
96%
med
Employed or in further education
90%
high
Employed in a role where degree was essential or beneficial

Top job areas of graduates

33%
Engineering professionals
31%
Information technology and telecommunications professionals
19%
Information technology technicians

This is one of the more popular areas to study engineering and there is not quite such a serious shortage of electrical engineers as there is of other engineering subjects - but there's still plenty of demand. The most common jobs are in telecommunications, electrical and electronic engineering, but there is some crossover with the computing industry, so many graduates start work in IT and computing jobs. At the moment, there's a particular demand for electrical engineers in the electronics, and the car and aerospace industries, and also in defence, and salaries can vary across the country depending on the industry you start in. Bear in mind that a lot of courses are four years long, and lead to an MEng qualification — this is necessary if you want to become a Chartered Engineer.

Mechanical engineering

What are graduates doing after six months?

This is what graduates told us they were doing (and earning), shortly after completing their course. We've crunched the numbers to show you if these immediate prospects are high, medium or low, compared to those studying this subject/s at other universities.

£25,000
med
Average annual salary
99%
high
Employed or in further education
89%
high
Employed in a role where degree was essential or beneficial

Top job areas of graduates

68%
Engineering professionals
5%
Business, research and administrative professionals
3%
Science, engineering and production technicians

We're short of engineers in a lot of areas and mechanical engineering is no exception. Mechanical engineers are in demand across multiple industries, with vehicle manufacturing most popular, with roles especially common in design and manufacturing. Other important sectors include aerospace, the oil and gas industry, consultancy and defence. Jobs are all around the country, with London, the Midlands, Scotland and the South East the most likely places for a new mechanical engineer to find work at the moment, and starting salaries are good. Although large employers are much the most likely place to get work, some of the most challenging, cutting edge jobs are with small niche engineering firms, so keep your eyes peeled if you want something a little different. Bear in mind that a lot of courses are four years long, and lead to an MEng qualification — this is necessary if you want to become a Chartered Engineer.

What about your long term prospects?

Looking further ahead, below is a rough guide for what graduates went on to earn.

Aeronautical and aerospace engineering

The graph shows median earnings of graduates who achieved a degree in this subject area one, three and five years after graduating from here.

£27k

£27k

£31k

£31k

£38k

£38k

Note: this data only looks at employees (and not those who are self-employed or also studying) and covers a broad sample of graduates and the various paths they've taken, which might not always be a direct result of their degree.

Electrical and electronic engineering

The graph shows median earnings of graduates who achieved a degree in this subject area one, three and five years after graduating from here.

£27k

£27k

£31k

£31k

£38k

£38k

Note: this data only looks at employees (and not those who are self-employed or also studying) and covers a broad sample of graduates and the various paths they've taken, which might not always be a direct result of their degree.

Mechanical engineering

The graph shows median earnings of graduates who achieved a degree in this subject area one, three and five years after graduating from here.

£27k

£27k

£31k

£31k

£38k

£38k

Note: this data only looks at employees (and not those who are self-employed or also studying) and covers a broad sample of graduates and the various paths they've taken, which might not always be a direct result of their degree.

Share this page

This is what the university has told Ucas about the criteria they expect applicants to satisfy; some may be compulsory, others may be preferable.

Have a question about this info? Learn more here

This is the percentage of applicants to this course who received an offer last year, through Ucas.

Have a question about this info? Learn more here

This is what the university has told Ucas about the course. Use it to get a quick idea about what makes it unique compared to similar courses, elsewhere.

Have a question about this info? Learn more here

Course location and department:

This is what the university has told Ucas about the course. Use it to get a quick idea about what makes it unique compared to similar courses, elsewhere.

Have a question about this info? Learn more here

Teaching Excellence Framework (TEF):

We've received this information from the Department for Education, via Ucas. This is how the university as a whole has been rated for its quality of teaching: gold silver or bronze. Note, not all universities have taken part in the TEF.

Have a question about this info? Learn more here

This information comes from the National Student Survey, an annual student survey of final-year students. You can use this to see how satisfied students studying this subject area at this university, are (not the individual course).

This is the percentage of final-year students at this university who were "definitely" or "mostly" satisfied with their course. We've analysed this figure against other universities so you can see whether this is high, medium or low.

Have a question about this info? Learn more here

This information is from the Higher Education Statistics Agency (HESA), for undergraduate students only.

You can use this to get an idea of who you might share a lecture with and how they progressed in this subject, here. It's also worth comparing typical A-level subjects and grades students achieved with the current course entry requirements; similarities or differences here could indicate how flexible (or not) a university might be.

Have a question about this info? Learn more here

Post-six month graduation stats:

This is from the Destinations of Leavers from Higher Education Survey, based on responses from graduates who studied the same subject area here.

It offers a snapshot of what grads went on to do six months later, what they were earning on average, and whether they felt their degree helped them obtain a 'graduate role'. We calculate a mean rating to indicate if this is high, medium or low compared to other universities.

Have a question about this info? Learn more here

Graduate field commentary:

The Higher Education Careers Services Unit have provided some further context for all graduates in this subject area, including details that numbers alone might not show

Have a question about this info? Learn more here

The Longitudinal Educational Outcomes dataset combines HRMC earnings data with student records from the Higher Education Statistics Agency.

While there are lots of factors at play when it comes to your future earnings, use this as a rough timeline of what graduates in this subject area were earning on average one, three and five years later. Can you see a steady increase in salary, or did grads need some experience under their belt before seeing a nice bump up in their pay packet?

Have a question about this info? Learn more here