Get degree ideas using our A level explorer tool

Mechanical Engineering

Tameside College

UCAS Code: MCE1 | Higher National Certificate - HNC

Entry requirements


Sorry, no information to show

You may also need to…

Attend an interview

About this course


This course has alternative study modes. Contact the university to find out how the information below might vary.

Course option

1year

Full-time | 2024

Other options

2 years | Part-time | 2024

Each unit studied will be delivered via a combination of lectures and workshop/laboratory activities by outstanding industry experienced staff with a range of specialisms that will connect your learning to the world of employment.

Class contact hours are based on approximately seven hours on your day of study at the centre but you will be required to undertake a substantial amount of self-study to supplement the class based activities.

Modules

ngineering Maths:

Students will be introduced to mathematical methods applicable to the engineering industry and statistical techniques in order to analyse and solve problems within an engineering context. You will interpret data using statistical techniques, and use analytical and computational methods to evaluate and solve engineering problems.

Engineering Science:

Engineering is a discipline that uses scientific theory to design, develop or maintain structures, machines, systems, and processes. Among the topics included in this unit are: international system of units, interpreting data, static and dynamic forces, fluid mechanics and thermodynamics, material properties and failure, and A.C./D.C. circuit theories.

Computer Aided Design and Manufacture (CAD/CAM):

The capacity to quickly produce finished components from a software model is now essential in the competitive world of manufacturing. Businesses now invest heavily in Computer Aided Design (CAD) software, Computer Aided Manufacture (CAM) software and Computer Numerical Control (CNC) machines to facilitate this, thus reducing product lead times. CAD gives design engineers the platform to creatively model components that meet the specific needs of the consumer. When these models are combined with CAM software, manufacturing is made a reality.

Electro, Hydraulic & Pneumatic Systems:

Hydraulics and pneumatics incorporate the importance of fluid power theory in modern industry. This is the technology that deals with the generation, control, and movement of mechanical elements or systems with the use of pressurised fluids in a confined system. In respect of hydraulics and pneumatics, both liquids and gases are considered fluids. Oil hydraulics employs pressurised liquid petroleum oils and synthetic oils, whilst pneumatic systems employ an everyday recognisable process of releasing compressed air to the atmosphere after performing the work.

Units to be studied in Y2:

Engineering Design:

The tremendous possibilities of the techniques and processes developed by engineers can only be realised by great design. Design turns an idea into a useful artefact, the problem into a solution, or something ugly and inefficient into an elegant, desirable and cost effective everyday object. Within this unit you will prepare an engineering design specification that satisfies stakeholders’ requirements.

Managing a Professional Engineering Project:

The responsibilities of an engineer go far beyond completing the task at hand. Engineering involves reflecting on their role in a wider ethical, environmental and sustainability context. This unit introduces students to the techniques and best practices required to successfully create and manage an engineering project designed to identify a solution to an engineering need. It is designed to challenge your decision making and reasoning and professional skills as you present your final project.

Mechanical Principles:

Mechanical principles have been crucial for engineers to convert the energy produced by burning oil and gas into systems to propel, steer and stop our automobiles, aircraft and ships, amongst thousands of other applications. The knowledge and application of these mechanical principles is still the essential

underpinning science of all machines in use today or being developed into the latest technology.

Fundamentals of Thermodynamics and Heat Engines:

Thermodynamics is one of the most common applications of science in our lives, and it is so much a part of our daily life that it is often taken for granted. For example, when driving your car you know that the fuel you put into the tank is converted into energy to propel the vehicle, and the heat produced by burning gas when cooking will produce steam which can lift the lid of the pan. These are

examples of thermodynamics, which is the study of the dynamics and behaviour of energy and its manifestations.

*All units are subject to change across each academic year.

Assessment methods

● You will be assessed through a variety of assessment methods including, displays, case studies, presentations, extended written work and practical assessments.

● You will also carry out a project where you can apply your skills and knowledge gained throughout your studies.

Tuition fees

Select where you currently live to see what you'll pay:

England
£5,995
for the whole course
Northern Ireland
£5,995
for the whole course
Scotland
£5,995
for the whole course
Wales
£5,995
for the whole course

The Uni


Course location:

Tameside College

Department:

Engineering

Read full university profile

What students say


Sorry, no information to show

This is usually because there were too few respondents in the data we receive to be able to provide results about the subject at this university.

After graduation


Sorry, no information to show

This is usually because there were too few respondents in the data we receive to be able to provide results about the subject at this university.

Explore these similar courses...

Share this page

This is what the university has told Ucas about the criteria they expect applicants to satisfy; some may be compulsory, others may be preferable.

Have a question about this info? Learn more here

This is the percentage of applicants to this course who received an offer last year, through Ucas.

Have a question about this info? Learn more here

This is what the university has told Ucas about the course. Use it to get a quick idea about what makes it unique compared to similar courses, elsewhere.

Have a question about this info? Learn more here

Course location and department:

This is what the university has told Ucas about the course. Use it to get a quick idea about what makes it unique compared to similar courses, elsewhere.

Have a question about this info? Learn more here

Teaching Excellence Framework (TEF):

We've received this information from the Department for Education, via Ucas. This is how the university as a whole has been rated for its quality of teaching: gold silver or bronze. Note, not all universities have taken part in the TEF.

Have a question about this info? Learn more here

This information comes from the National Student Survey, an annual student survey of final-year students. You can use this to see how satisfied students studying this subject area at this university, are (not the individual course).

This is the percentage of final-year students at this university who were "definitely" or "mostly" satisfied with their course. We've analysed this figure against other universities so you can see whether this is high, medium or low.

Have a question about this info? Learn more here

This information is from the Higher Education Statistics Agency (HESA), for undergraduate students only.

You can use this to get an idea of who you might share a lecture with and how they progressed in this subject, here. It's also worth comparing typical A-level subjects and grades students achieved with the current course entry requirements; similarities or differences here could indicate how flexible (or not) a university might be.

Have a question about this info? Learn more here

Post-six month graduation stats:

This is from the Destinations of Leavers from Higher Education Survey, based on responses from graduates who studied the same subject area here.

It offers a snapshot of what grads went on to do six months later, what they were earning on average, and whether they felt their degree helped them obtain a 'graduate role'. We calculate a mean rating to indicate if this is high, medium or low compared to other universities.

Have a question about this info? Learn more here

Graduate field commentary:

The Higher Education Careers Services Unit have provided some further context for all graduates in this subject area, including details that numbers alone might not show

Have a question about this info? Learn more here

The Longitudinal Educational Outcomes dataset combines HRMC earnings data with student records from the Higher Education Statistics Agency.

While there are lots of factors at play when it comes to your future earnings, use this as a rough timeline of what graduates in this subject area were earning on average one, three and five years later. Can you see a steady increase in salary, or did grads need some experience under their belt before seeing a nice bump up in their pay packet?

Have a question about this info? Learn more here